Literature Cited

- (1) Perry, J. H. "Chemical Engineer's Handbook", 3rd ed.; McGraw-Hill: New York, 1950; p 166.
- Zeisberg, F. C. Chem. Metali. Eng. 1925, 32, 326
- (3) Fritz, J. J.; Fuget, C. R. Ind. Eng. Chem., Chem. Eng. Ser. 1959, 1, 10.
- (4) Othmer, D. F.; Naphtali, L. M. Ind. Eng. Chem., Chem. Eng. Ser. 1959, 7, 1.
- Harned, H. S.; Ehlers, R. W. J. Am. Chem. Soc. 1932, 54, 1350. (6) Harned, H. S.; Ehlers, R. W. J. Am. Chem. Soc. 1933, 55, 2179.
- (7) Akeriof, G.; Teare, J. W. J. Am. Chem. Soc. 1937, 59, 1855.
- Rupert, F. F. J. Am. Chem. Soc. 1909, 31, 851. (8)
- (9) Haase, R.; Naas, H.; Thumm, H. Z. Phys. Chem. (Frankfurt am Main) 1963, 37, 210.
- (10) Kao, J. T. F. J. Chem. Eng. Data 1970, 15, 362.
 (11) Dunn, J. S.; Rideal, E. K. J. Chem. Soc. 1924, 125, 676.
- (12) Van Ness, H. C. AIChE J. 1970, 16, 18.

Received for review May 24, 1982. Revised manuscript received April 11, 1983. Accepted April 29, 1983. This work was supported by the U.S. Air Force Office of Scientific Research under Grant AFOSR-77-3333.

Measurements of Densities and Dielectric Constants of Liquid Isobutane from 120 to 300 K at Pressures to 35 MPa

William M. Hayn.

Thermophysical Properties Division, National Engineering Laboratory, National Bureau of Standards, Boulder, Colorado 80303

Measurements of the densities and dielectric constants of compressed liquid isobutane have been carried out at temperatures between 120 and 300 K to pressures of 35 MPa. These experimental data along with computed values for the Clausius-Mossotti function (CM) are reported in this paper.

Introduction

This work is part of a large-scale program at this laboratory to determine the thermophysical properties of technically important fluids. In addition to isobutane being a major component of petroleum and natural gases, it is a prime candidate as a working fluid in geothermal energy processes. This work was undertaken to provide density and dielectric constant data for isobutane in regions not previously investigated.

Experimental Section

Detailed descriptions of the experimental apparatus and procedures have been presented in other papers (1-5). Only information essential to understand this paper is presented here.

Simultaneous measurements of density and dielectric constant were made on the same liquid samples. A magnetic suspension densimeter was used to obtain the density data, while a concentric cylindrical capacitor contained in the same apparatus was employed for the dielectric constant measurements. Pressures were measured with an oil-operated deadweight gauge. The isobutane sample was separated from the oil by a diaphragm-type differential pressure indicator. The primary temperature sensor was a platinum resistance thermometer.

For the magnetic suspension densimeter used in the present work, the magnetic moment of the float material is a relatively strong function of temperature. Thus, it is most practical to take data along isotherms. For each temperature, the cell was first filled to the highest pressure (35 MPa) for that run. Data points at lower pressures were taken after venting appropriate amounts of gas. For each isotherm the last point was taken on the coexistence boundary to compare with previous saturated-liquid density results (6) obtained with a magnetic suspension densimeter in this laboratory. The present saturatedliquid data agreed with those taken earlier to better than 0.02% and are not published here since they were used only as a

check on the present work. (Saturated-liquid dielectric constants obtained in the present study have been published elsewhere (5).) Vacuum measurements, needed at each temperature for absolute density measurements with the magnetic suspension densimeter used here, were obtained, for each run, before charging the cell with liquid isobutane.

The samples were obtained from cylinders of research-grade, commercially available liquid isobutane. The minimum purity as specified by the supplier was 99.90 mol %, with the most probable impurity being n-butane.

Results and Discussion

The experimental densities ($\rho)$ and dielectric constants ($\epsilon)$ for liquid isobutane are given as a function of temperature (7, IPTS-68) and pressure (P) in Table I. Also presented in this table are values for the Clausius-Mossotti function (CM) calculated from the relation

$$CM = \left(\frac{\epsilon - 1}{\epsilon + 2}\right) \frac{1}{\rho}$$
(1)

Data have been obtained for 11 isotherms between 120 and 300 K. Two of the isotherms (at 140 and 160 K) were repeated on new samples to determine the reproducibility of the measurements. Each isotherm was comprised of 12 data points taken at pressures approximately equal to those for any other isotherm. The density range for this work extended from 551 kg/m³, or approximately 2.5 times the critical density, to 749 kg/m³, which is slightly greater than the triple-point density.

The estimated total uncertainty in the experimental densities is less than 0.1% while the imprecision of the measurements is a few parts in 10^4 (3). The estimate of the imprecision was substantiated by the reproducibility of the isotherms at 140 and 160 K on different liquid samples. Capacitance measurements to a resolution of 10⁻⁴ pF, combined with better than 10⁻⁴-pF stability in the vacuum capacitance, gave an estimated uncertainty of approximately 0.01% in the dielectric constant. For pressure, the overall uncertainty was approximately 0.01%, increasing somewhat at lower pressures. Temperatures were measured to a precision of a few mK; however, the total uncertainty could be as large as 30 mK at 300 K, decreasing to approximately 15 mK at 120 K.

The density and dielectric constant data from this work have been used in comprehensive correlations (7, 8) of the thermophysical properties of isobutane. Only one other set of data

Table I. Experimental Densities (ρ), Dielectric Constants (ϵ), and Clausius-Mossotti Functions (CM) of Liquid Isobutane as a Function of Pressure (P) and Temperature (T, IPTS-68)

D/04D	(/1		CM/	D/1(D	((1 - 3)		CM/
P/MPa	$\rho/(kg m^{-3})$	e	(cm ³ mol ⁻¹)	P/MPa	$\rho/(\text{kg m}^{-3})$	ε	(cm ³ mol ⁻¹)
24 7009	749.90	0 116 00	T = 120	0.000 K	740.05	0 104 00	01 1004
34.7208	740.09	2.110 92	21.0567	10 6189	740.95	2.104.00	21.1024
27.8345	746.29	2.11273	21.0722	7.8644	738.51	2.099 88	21.1000 21.1142
24.3914	744.97	2.110 59	21.0798	5.1102	737.36	2.09802	21.1209
20.9480	743.63	2.10842	21.0878	3.0443	736.52	2.096 61	21.1252
17.5050	742.29	2.106 22	21.0952	1.6672	735.97	2.095 66	21.1276
			T = 130	.000 K			
34.7197	740.21	2.09697	21.0248	14.0603	731.74	2.08316	21.0717
31.2765	738.81	2.094 74	21.0336	10.6174	730.30	2.08075	21.0785
27.8330	737.39	2.092 49	21.0419	7.8629	729.14	2.078 77	21.0836
24.3898	730.99	2.090 21	21.0500	5.1086 3.0428	727.98	2.07677	21.0885
17.5035	733.17	2.085 55	21.0645	1.6657	726.47	2.074 24	21.0959
		2.000.00					
34 7206	731 59	2 077 81	T = 140	34 7188	731 35	2 077 89	21 0064
31.2773	730.06	2.075 47	21.0095	31.2755	730.02	2.07546	21.0107
27.8337	728.60	2.073 08	21.0174	27.8319	728.55	2.073 07	21.0186
24.3905	727.13	2.07065	21.0248	24.3887	727.08	2.07065	21.0260
20.9471	725.66	2.06818	21.0315	20.9453	725.59	2.06817	21.0333
17.5039	724.35	2.065 68	21.0331	17.5022	724.10	2.065 66	21.0402
14.0607	722.78	2.06313	21.0417	14.0590	722.58	2.06311	21.0472
10.0179	721.10	2.000 04	21.0011	7 8616	721.00	2.060.52	21.0550
5 1089	718 59	2.056 27	21.0575	5 1073	718 50	2.056.26	21.0000
3.0429	717.61	2.054 64	21.0680	3.0416	717.56	2.054 63	21.0690
1.6658	716.97	2.05354	21.0706	1.6645	716.92	2.053 52	21.0715
			T = 160	000 K			
34.7211	714.54	2.04142	20.9616	34.7198	714.82	2.04143	20.9534
31.2776	712.91	2.03878	20.9699	31.2765	713.16	2.038 77	20.9626
27.8341	711.23	2.036 08	20.9788	27.8330	711.54	2.03607	20.9696
24.3910	709.55	2.03334	20.9871	24.3899	709.82	2.033 33	20.9790
20.9476	707.81	2.030 53	20.9960	20.9465	708.05	2.030 52	20.9890
17.5045	706.09	2.027.67	21.0039	17.5034	706.27	2.02767	20.9982
10 6184	702.50	2.02475	21.0125	11 3059	703.05	2.02473	21.0004
7.8639	701.08	2.019 35	21.0261	8.5513	701.54	2.019 95	21.0214
5.1097	699.65	2.01688	21.0307	5.7971	700.09	2.01749	21.0270
3.0438	698.54	2.01499	21.0348	3.7314	698.93	2.01560	21.0328
1.6667	697.80	2.01372	21.0377	1.6655	697.82	2.01371	21.0369
			T = 180	.000 K			
34.7205	698.14	2.006 91	20.9217	14.0609	686.35	1.98797	20.9800
31.2771	696.32	2.003 92	20.9297	11.3066	684.66	1.985 23	20.9877
27.8336	694.45 602.53	2.000 87	20.9382	8.0021 5.7078	682.93 681 10	1.98244	20.9963
24.3503	690 51	1 994 57	20.9472	3 7322	679.89	1 977 40	21.0038
17.5041	688.44	1.991 32	20.9694	1.6663	678.53	1.97519	21.0144
			T = 200	000 K			
34.7199	681.48	1.974 07	20.9053	14.0603	668.06	1.952 55	20.9679
31.2766	679.39	1.97072	20.9154	11.3061	666.10	1.949 40	20.9764
27.8331	677.29	1.96728	20.9240	8.5516	664.13	1.94616	20.9841
24.3899	675.08	1.96374	20.9340	5.7974	662.14	1.94285	20.9914
20.9466	672.84	1.96012	20.9441	3.7317	660.58	1.940 30	20.9975
17.5036	670.50	1.950.99	20.9554	1.0059	000.98	1.93770	21.0042
	005 10	1.040.00	T = 220	.000 K	C 10 C 1		00.0505
34.7200	665.12	1.94223	20.8869	14.0605	649.64	1.91777	20.9593
27.8332	660.21	1.934 55	20.9017	8 5517	645 03	1.910.37	20.9090
24,3901	657.76	1.930 55	20.9209	5.7974	642.61	1.906 50	20.9889
20.9467	655.16	1.926 26	20.9298	3.7318	640.78	1.903 51	20.9956
17.5037	652.45	1.92217	20.9457	1.6659	638.95	1.90044	21.0006
			T = 240	.000 K			
34.7206	648.35	1.911 36	20.8885	14.0611	630.96	1.88354	20.9582
31.2773	645.65	1.90712	20.9011	11.3068	628.31	1.879 33	20.9691
27.8339	642.90 640.10	1.90273	20.9126	8.5529	625.59	1.874.95	20.9792
24.3908	637.19	1.893 50	20.9224	3.7323	620.67	1.866.86	20.9938
17.5043	634.17	1.888 66	20.9454	1.6665	618.47	1.863 21	20.9993

Table I (Continued))
-----------	------------	---

P/MPa	$\rho/(\mathrm{kg}\mathrm{m}^{-3})$	ε	CM/ (cm ³ mol ⁻¹)	P/MPa	$\rho/(\mathrm{kg}\ \mathrm{m}^{-3})$	e	CM/ (cm ³ mol ⁻¹)
 			T = 260	000 K			<u> </u>
34 7194	631 93	1 881 19	20.8831	14 0602	612 16	1 849 53	20 9540
91 9761	628.00	1 976 44	20.0001	11 3060	609 14	1 844 61	20.0040
07 9907	625.90	1 971 50	20.0300	9 5515	605.14	1 830 /7	20.0020
21.0021	600 50	1 966 99	20.5081	5 7079	609.60	1 994 00	20.9719
24.0091	610.95	1.000.00	20.9203	0.1910	500.06	1.004.05	20.3034
20.9464	019.20	1.861.03	20.9318	0,7017	599.90	1.029.07	20.9921
17.5033	615.77	1.85541	20.9432	1.6658	597.22	1.82544	21.0006
			T = 280	.000 K			
34.7209	614.96	1.85162	20.8985	14.0611	592.30	1.81542	20.9725
31.2775	611.59	1.84627	20.9106	11.3069	588.73	1.80965	20.9822
27.8340	608.03	1.84069	20.9246	8.5523	585.03	1.80355	20.9895
24.3908	604.35	1.83485	20.9379	5.7981	581.14	1.797 09	20.9957
20.9474	600.52	1.82873	20.9503	3.7324	578.03	1.791 96	21.0012
17.5043	596.52	1.822 26	20.9616	1.6665	574.76	1.786 55	21.0064
			T = 300	000 K			
34.7216	598.61	1.82267	20.8965	14.0620	572.38	1.781 19	20.9796
31 2783	594 84	1 816 67	20 9081	11 3077	568 15	1 774 33	20 9886
27 8348	590 88	1 810 36	20.0001	8 5531	563 71	1 767 01	20.0000
24 3016	586.64	1 803 70	20.0204	5 7989	558 89	1 759 11	21 0015
24.0910	590 16	1 706 69	20.3002	27220	554 01	1 759 75	21.0010
20.9400	002.10 577 41	1 700 10	20.5000	1 6674	550 70	1 745 05	01 0179

Figure 1. Clausius-Mossotti function as a function of density for liquid isobutane; data from this work and ref 5.

overlap the results of the present work. Sage and Lacey (9) obtained data for isobutane at temperatures between 294 and 394 K at pressures to 20 MPa. When compared via the equation of state in ref 7, the densities of Sage and Lacey at 294 K were approximately 1% larger than those from this work.

In Figure 1 the Clausius-Mossotti function is plotted as a function of density for selected isotherms for isobutane. The saturated-liquid values were taken from an earlier paper (5). At low temperatures (or high densities) along the saturation curve, the CM function increased with decreasing temperature. This behavior is the opposite of that exhibited by n-butane (5), for which the CM function decreases with increasing density (decreasing temperature) for a density range from approximately the critical density to the triple-point liquid density. The behavior exhibited by n-butane is typical of that for most simple, nonpolar molecules. Isobutane and also propane (5) are very weakly polar fluids with small dipole moments (μ) and are characterized by the sharp increase, proportional to μ^2/T , in the CM function at low temperatures for the liquid along the saturation curve.

Registry No. Isobutane, 75-28-5.

Literature Cited

- Haynes, W. M. J. Res. Nati. Bur. Stand. (U.S.), in press.
- Haynes, W. M. J. Chem. Thermodyn. 1982, 14, 603. Haynes, W. M.; Hiza, M. J.; Frederick, N. V. Rev. Sci. Instrum. 1976, (3) 47, 1237
- Haynes, W. M. Rev. Sci. Instrum. 1977, 48, 38.
- Haynes, W. M.; Younglove, B. A. In "Advances in Cryogenic Engineering"; Fast, R. W., Ed.; Plenum Press: New York, 1982; Vol. (5) 27, p 883.
- Haynes, W. M.; Hiza, M. J. J. Chem. Thermodyn. 1977, 9, 179. Goodwin, R. D.; Haynes, W. M. NBS Tech. Note (U.S.) 1982, No. (7)
- 1051.
- (8) Waxman, M.; Gallagher, J. J. Chem. Eng. Data, in press.
 (9) Sage, B. H.; Lacey, W. N. Ind. Eng. Chem. 1938, 30, 673.
- Received for review November 10, 1982. Accepted March 11, 1983. This work was carried out at the National Bureau of Standards under the sponsorship of the Gas Research Institute.